Cement Newsline

Consistent with its Strategy 2022, LafargeHolcim announced that it will close its head offices in Paris and Zurich by the end of the year, eliminating 200 jobs as part of a cost-cutting drive. Remaining positions in Switzerland will be moved to the company’s Holderbank site and a new corporate...
More inLatest  

Latest Digital Edition

Cement Products

Martine Engineering helped mitigate dust emissions at the underground limestone mine of a cement production plant by implementing an innovative transfer point solution. Using a specially-designed dust control unit (DCU) to spray a surfactant onto both sides of the cargo stream during transfer onto the...
More inProducts  

CMC Invests in Two Cement-Related Projects

Carbon Management Canada (CMC) has awarded a total of $3.75 million to eight new research projects including two that are focused on the cement industry. With these awards, CMC has now committed $22 million to 44 research projects at Canadian universities with additional contributions and partners from more than 100 companies, stakeholder organizations and international universities in countries such as the United States, the U.K., Australia and Germany.

“Carbonate Production by Sequestration of Industrial CO2: Revalorization of Mine and Industrial Waste” is led by Guy Mercier, Institut national de la recherche scientifique (INRS) with co-principal investigators Jean-Francois Blais, INRS; Sandra Kentish, University of Melbourne; and Ian Gates, University of Calgary. CMC investment is $300,000/2 years.

In nature, CO2 can be removed from the atmosphere through a process called carbon mineralization whereby CO2 reacts with minerals to form carbonate rock. The goal of this project, which is being undertaken with industrial partners Holcim Canada and Sigma Devtech, is to use this type of reaction and accelerate it to treat industrial CO2 emissions.

The group will be reacting various magnesium and calcium rocks available in asbestos tailings mines with the gaseous emission (containing CO2) of a Holcim cement plant with the participation of the cement plant staff in a chemical reactor (a plant in itself). Doing so, silicate of magnesium or calcium, depending on the rocks, used will be transformed to carbonate of magnesium or calcium. Researchers will focus on developing an economically attractive process as well as one that is easily integrated into industrial applications. Cost reductions are being accomplished by decreasing the number of steps, working in low temperature/
pressure conditions, and by finding commercial outlets for the carbonated byproducts.

The aim is to implement the process in a variety of industries such as steel, coal power plants and cement plants in order to achieve a meaningful decrease of CO2 emissions to the atmosphere.

The second project, “Low Carbon Fuel Demonstration Pilot Plant for the Cement Industry,” is led by Dr. Warren Mabee with co-principal investigator Andrew Pollard, both of Queen’s University. CMC will invest $400,000/3 years.

In this collaborative effort involving academic researchers, the Cement Association of Canada and World Wildlife Federation Canada, six different low carbon biofuels will be co-fired with fossil fuels. Manufacturing cement requires large inputs of energy in order to heat the cement kiln to temperatures of up to 1,450 C.

Normal practice is to combust fossil fuels such as coal and petroleum cokes. Replacing some of those fuels with low carbon fuels – such as construction and demolition wood and railway ties – will result in a net reduction in GHG emissions because biofuels are carbon neutral (CO2 is removed from the atmosphere in the biomass and then released during combustion). Further, the re-use of fossil-derived fractions within the mixed low carbon fuels will increase fossil resource usage efficiency.

One key aspect of the project is to increase the feed rate of low-carbon alternative fuels. The change in gas emissions from the plant, expected to be beneficial, will be monitored and well as the effect of the various fuels on the physical and chemical properties of the cement produced, through life cycle assessment.

Let's stay in touch!

All of the latest news and our digital edition sent to your inbox once a week.

We'll never share your email address, and you can opt out at any time, we promise.

Resource Center