Cement Newsline

Cemex’s Health Week ran from Aug. 7-11, and nearly 9,000 employees were encouraged to learn the keys to healthy lifestyles that can enhance their lives. The program focused on the Building Blocks of Health and urged employees to be active, eat and drink wisely, prevent stress, quit tobacco, sleep...
More inLatest  

PCA Energy and Environment Awards

The Roanoke Cement Co. Troutville cement plant in Troutville, Va., received the Overall Environmental Excellence Award from the Portland Cement Association (PCA) and Cement Americas magazine as part of the 2014 Cement Industry Energy and Environment...

Latest Digital Edition

Cement Scope

Cement Shoptalk

Established in 1999 and located in the port of Antwerp, Belgium, Diamur is a producer of cement mortars. With a capacity of about 700,000 metric tpy, the plant produces products in bulk silos and 25-kg bags. It has become a leading producer by developing a reputation for quality and user-friendly...
More inShoptalk  

CMC Invests in Two Cement-Related Projects

Carbon Management Canada (CMC) has awarded a total of $3.75 million to eight new research projects including two that are focused on the cement industry. With these awards, CMC has now committed $22 million to 44 research projects at Canadian universities with additional contributions and partners from more than 100 companies, stakeholder organizations and international universities in countries such as the United States, the U.K., Australia and Germany.

“Carbonate Production by Sequestration of Industrial CO2: Revalorization of Mine and Industrial Waste” is led by Guy Mercier, Institut national de la recherche scientifique (INRS) with co-principal investigators Jean-Francois Blais, INRS; Sandra Kentish, University of Melbourne; and Ian Gates, University of Calgary. CMC investment is $300,000/2 years.

In nature, CO2 can be removed from the atmosphere through a process called carbon mineralization whereby CO2 reacts with minerals to form carbonate rock. The goal of this project, which is being undertaken with industrial partners Holcim Canada and Sigma Devtech, is to use this type of reaction and accelerate it to treat industrial CO2 emissions.

The group will be reacting various magnesium and calcium rocks available in asbestos tailings mines with the gaseous emission (containing CO2) of a Holcim cement plant with the participation of the cement plant staff in a chemical reactor (a plant in itself). Doing so, silicate of magnesium or calcium, depending on the rocks, used will be transformed to carbonate of magnesium or calcium. Researchers will focus on developing an economically attractive process as well as one that is easily integrated into industrial applications. Cost reductions are being accomplished by decreasing the number of steps, working in low temperature/
pressure conditions, and by finding commercial outlets for the carbonated byproducts.

The aim is to implement the process in a variety of industries such as steel, coal power plants and cement plants in order to achieve a meaningful decrease of CO2 emissions to the atmosphere.

The second project, “Low Carbon Fuel Demonstration Pilot Plant for the Cement Industry,” is led by Dr. Warren Mabee with co-principal investigator Andrew Pollard, both of Queen’s University. CMC will invest $400,000/3 years.

In this collaborative effort involving academic researchers, the Cement Association of Canada and World Wildlife Federation Canada, six different low carbon biofuels will be co-fired with fossil fuels. Manufacturing cement requires large inputs of energy in order to heat the cement kiln to temperatures of up to 1,450 C.

Normal practice is to combust fossil fuels such as coal and petroleum cokes. Replacing some of those fuels with low carbon fuels – such as construction and demolition wood and railway ties – will result in a net reduction in GHG emissions because biofuels are carbon neutral (CO2 is removed from the atmosphere in the biomass and then released during combustion). Further, the re-use of fossil-derived fractions within the mixed low carbon fuels will increase fossil resource usage efficiency.

One key aspect of the project is to increase the feed rate of low-carbon alternative fuels. The change in gas emissions from the plant, expected to be beneficial, will be monitored and well as the effect of the various fuels on the physical and chemical properties of the cement produced, through life cycle assessment.

Resource Center

Let's stay in touch!

All of the latest news and our digital edition sent to your inbox once a week.

We'll never share your email address, and you can opt out at any time, we promise.

2017 Cement Directory

NACD
 

Completely updated, the new 2017 North American Cement Directory. Currently available for ordering exclusively from Cement Americas. Order Now